Roles of the Mdm10, Tom7, Mdm12, and Mmm1 Proteins in the Assembly of Mitochondrial Outer Membrane Proteins in Neurospora crassa

نویسندگان

  • Jeremy G. Wideman
  • Nancy E. Go
  • Astrid Klein
  • Erin Redmond
  • Sebastian W.K. Lackey
  • Tan Tao
  • Hubert Kalbacher
  • Doron Rapaport
  • Walter Neupert
  • Frank E. Nargang
چکیده

The Mdm10, Mdm12, and Mmm1 proteins have been implicated in several mitochondrial functions including mitochondrial distribution and morphology, assembly of beta-barrel proteins such as Tom40 and porin, association of mitochondria and endoplasmic reticulum, and maintaining lipid composition of mitochondrial membranes. Here we show that loss of any of these three proteins in Neurospora crassa results in the formation of large mitochondrial tubules and reduces the assembly of porin and Tom40 into the outer membrane. We have also investigated the relationship of Mdm10 and Tom7 in the biogenesis of beta-barrel proteins. Previous work showed that mitochondria lacking Tom7 assemble Tom40 more efficiently, and porin less efficiently, than wild-type mitochondria. Analysis of mdm10 and tom7 single and double mutants, has demonstrated that the effects of the two mutations are additive. Loss of Tom7 partially compensates for the decrease in Tom40 assembly resulting from loss of Mdm10, whereas porin assembly is more severely reduced in the double mutant than in either single mutant. The additive effects observed in the double mutant suggest that different steps in beta-barrel assembly are affected in the individual mutants. Many aspects of Tom7 and Mdm10 function in N. crassa are different from those of their homologues in Saccharomyces cerevisiae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Mutations in Neurospora crassa ERMES Components Reveals Specific Functions Related to β-Barrel Protein Assembly and Maintenance of Mitochondrial Morphology

The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including alter...

متن کامل

Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast

The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the muta...

متن کامل

Functions of the small proteins in the TOM complex of Neurospora crasssa.

The TOM (translocase of the outer mitochondrial membrane) complex of the outer mitochondrial membrane is required for the import of proteins into the organelle. The core TOM complex contains five proteins, including three small components Tom7, Tom6, and Tom5. We have created single and double mutants of all combinations of the three small Tom proteins of Neurospora crassa. Analysis of the muta...

متن کامل

Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40.

The mitochondrial outer membrane contains two protein translocators: the TOM40 and TOB/SAM complexes. Mdm10 is distributed in the TOB complex for beta-barrel protein assembly and in the MMM1 complex for tethering of the endoplasmic reticulum and mitochondria. Here, we establish a system in which the Mdm10 level in the TOB complex--but not in the MMM1 complex--is altered to analyse its part in b...

متن کامل

Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa.

The establishment and maintenance of the 3D structure of eukaryotic cells depends on active transport and positioning of organelles along cytoskeletal elements. The biochemical basis of these processes is only poorly understood. We analysed the interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Mitochondria were fluorescently labelled by expression of mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010